贝叶斯统计
书籍:心理学大辞典上卷
更新时间:2018-09-12 18:36:30
出处:按学科分类—哲学、宗教 上海教育出版社《心理学大辞典上卷》第41页(624字)
推断统计理论的一种。
英国学者贝叶斯在1763年发表的论文《有关机遇问题求解的短论》中提出。依据获得样本(X1,X2,…,Xn)之后θ的后验分布π(θ|X1,X2,…,Xn)对总体参数θ作出估计和推断。
它不是由样本分布作出推断。其理论基础是先验概率和后验分布,即在事件概率时,除样本提供的后验信息外,还会凭借自己主观已有的先验信息来估计事件的概率。
而以R.A.费希尔为首的经典统计理论对事件概率的解释是频率解释,即通过抽取样本,由样本计算出事件的频率,而样本提供的信息完全是客观的,一切推断的结论或决策不允许加入任何主观的先验的信息。以对神童出现的概率P的估计为例。
按经典统计的做法,完全由样本提供的信息(即后验信息)来估计,认为参数p是一个“值”。贝叶斯统计的做法是,除样本提供的后验信息外,人类的经验对p有了一个了解,如p可能取p1与p2,且取p1的机会很大,取p2机会很小。
先验信息关于参数p的信息是一个“分布”,如P(p=p1)=0.9,P(p=p2)=0.1,即在抽样之前已知道(先验的)p取p1的可能性为0.9。
若不去抽样便要作出推断,自然会取p=p1。但若抽样后,除非后验信息(即样本提供的信息)包含十分有利于“p=p2”的支持论据,否则采纳先验的看法“p=p1”。20世纪50年代后贝叶斯统计得到真正发展,但在发展过程中始终存在着与经典统计之间的争论。
参见“先验概率”、“后验分布”。
上一篇:贝叶斯判别
下一篇:心理学大辞典上卷目录