反证法
出处:按学科分类—自然科学总论 山东人民出版社《方法大辞典》第52页(1005字)
间接论证的一种。
先论证与原论题相矛盾的论题即反论题为假,然后根据排中律确定原论题为真。其论证过程可以表示如下:
〔求证〕 A(原论题)
〔证明〕 (1)设非A真(非A为反论题)
(2)如果非A,则B(B为由非A推出的论断)
(3)非B(已知)
(4)所以,并非非A(根据充分条件假言推理的否定后件式)
(5)所以,A(非非A=A)。
例如,语言学工作者论证“语言的声音和它所表示的事物之间没有必然联系”这一论题时运用反证法论证如下:“声音和词所表示的事物之间并没有什么必然的联系,并非某一个声音必然表示某一个对象。声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同一事物的词的声音就应当是相同的。
既然世界上表示同一事物的词的声音各有不同,可见语言的声音和所表示的事物之间是没有必然联系的。”这一段论述的反证过程分析如下:
论题:语言的声音和所表示的事物之间没有必然的联系(在开头提出,最后又做归结)
反论题:声音和事物的结合有必然联系。
设反论题为真,然后进行推导:“声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同一事物的词的声音就应是相同的。”后件显然不能成立:“世界上表示同一事物的词的声音各有不同”。根据充分条件假言推理的否定式,否定后件就必然否定前件,从而证明反论题“声音和事物的结合有必然联系”是假的。
然后根据排中律,证明原论题是真的。需要注意的是,反证法是通过先论证反论题假,然后由假推真,确定原论题真。因此反论题与原论题必须是矛盾关系,不能是反对关系。
因为反对关系的判断可以同假,即从一个判断的假不能必然推出另一判断的真。
反证法在数学中经常运用。
当论题从正面不容易或不能得到证明时,就需要运用反证法。